MATH 2050 - Monotone Convergence Theorem
(Reference: Bartle §3.3)

Q: Can we determine the limit of $\left(x_{n}\right)$ exist without knowing the value of the limit?

Recall: $\left(x_{n}\right)$ convergent $\underset{\sim}{\Rightarrow}\left(x_{n}\right)$ bod false
\Rightarrow Cor: $\left(x_{n}\right)$ unbid $\Rightarrow\left(x_{n}\right)$ divergent. "Divergence Test"
Counterexample: $\left(x_{n}\right)=\left((-1)^{n}\right)$ is bold BuT divergent
Pf: Suppose $\left(x_{n}\right)$ is convergent, say $\lim \left(x_{n}\right)=a \in \mathbb{R}$.

$$
\text { Take } \varepsilon=1, \exists K \in \mathbb{N} \text { s.t. }\left|x_{n}-a\right|<\varepsilon=1 \quad \forall n \geqslant K
$$

For $n \geqslant K$ is odd. we have

$$
\begin{aligned}
& \left|x_{n}-a\right| \\
\Rightarrow \quad-2 & <a<0
\end{aligned}
$$

For $n \geqslant k$ is even, we have

$$
\begin{aligned}
& \left|x_{n}-a\right|=|1-a|<1 \\
& \Rightarrow \quad 0<a<2
\end{aligned}
$$

Q: Under what condition (s) does
$\left(x_{n}\right)$ bod $\Rightarrow\left(x_{n}\right)$ convergent?

Monotone Convergence Theorem (MCT)
$\left(x_{n}\right)$ od + monotone $\Rightarrow\left(x_{n}\right)$ convergent

Def n: $\left(x_{n}\right)$ is monotone if it is
either (i) increasing, i.e. $x_{1} \leqslant x_{2} \leqslant x_{3} \leqslant \cdots \quad\left(x_{n} \leqslant x_{n+1} \quad \forall n \in \mathbb{N}\right)$
or (ii) decreasing, i.e. $x_{1} \geq x_{2} \geqslant x_{3} \geqslant \cdots \quad\left(x_{n} \geqslant x_{n+1} \forall n \in \mathbb{N}\right)$
Note: If inequalities are strict, then we say it is strictly monotone I increasing I decreasing.

Picture:

Proof of MCT: Idea: $\lim \left(x_{n}\right)=\sup \left\{x_{n} \mid n \in \mathbb{N}\right\}$
Suppose $\left(x_{n}\right)$ is bod and increasing. Consider

$$
\phi \neq S:=\left\{x_{n} \mid n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Note $\left(x_{n}\right)$ is bod $\Rightarrow S$ is bad above \& below By completeness of $\mathbb{R}, x:=\sup S$ exists.

Claim: $\lim \left(x_{n}\right)=x$
Pf of Claim: We show this using ε - K defy of limit.
Let $\varepsilon>0$ be fixed but arbitrang.
Since $x=\sup S, x-\varepsilon$ CANNOT be an upper bod for S ie $\exists K \in \mathbb{N}$ st. $\quad x-\varepsilon<x_{K}$

Since $\left(x_{n}\right)$ is increasing (i.e. $x_{n} \leq x_{n+1} \quad \forall n \in \mathbb{N}$)
\Rightarrow (1): $x-\varepsilon<x_{k} \leqslant x_{k+1} \leq x_{k+2} \leq \cdots \leq x_{n} \quad \forall n \geqslant k$
On the other hand, $x=\sup S$ is an upper bod for S
\Rightarrow (2): $\quad x_{n} \leq x<x+\varepsilon \quad \forall n \in \mathbb{N}$
Combining (1) \& (2).

$$
x-\varepsilon<x_{n}<x+\varepsilon \quad \forall n \geqslant K
$$

Example 1 "Harmonic series"
Let $h_{n}:=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} \quad . n \in \mathbb{N}$.
ia $h_{1}=1, h_{2}=1+\frac{1}{2}=\frac{3}{2}, \cdots \cdots$
Show that $\left(K_{n}\right)$ is divergent.
Pf: Note $h_{n+1}=h_{n}+\frac{1}{n+1}>h_{n} \quad \forall n \in \mathbb{N}$ ie $\left(h_{n}\right)$ is strictly increasing!
By MCT, (hun) divergent $\Leftrightarrow\left(h_{n}\right)$ unbid

Claim: $\left(h_{n}\right)$ is unbdd!
Consider $n=2^{m}, m \in \mathbb{N}$.

$$
\begin{aligned}
h_{2^{m}} & =1+\underbrace{\frac{1}{2}}_{2}+(\underbrace{\frac{1}{3}+\frac{1}{4}}_{2 \operatorname{tanm}})+\cdots+\underbrace{\frac{1}{2^{m-1}+1}+\cdots+\frac{1}{2^{m}}}_{\text {tam }}) \\
& >1+\underbrace{2}_{2^{m-1}}+\left(\frac{1}{4}+\frac{1}{4}\right)+\cdots+(\overbrace{\frac{1}{2^{m}}+\cdots+\frac{1}{2^{m}}}) \\
& =1+\frac{1}{2}+\frac{1}{2}+\cdots+\underbrace{\frac{1}{2}}
\end{aligned}
$$

$\Rightarrow \quad\left(h_{n}\right)$ is unbid.
Remark: MCT works well for recursive sequence.
Example 2 : Let $\left(y_{n}\right)$ be defined "recursively" by:

$$
y_{1}:=1 ; \quad y_{n+1}:=\frac{1}{4}\left(2 y_{n}+3\right) \quad \forall n \in \mathbb{N}
$$

Show that $\lim \left(y_{n}\right)=\frac{3}{2}$.
Proof: General step 1: Apply MCT to show the limit first
Strategy Step 2: Take limit in the recursive relation (*) to compute the limit of the seq.

We first show that $\left(y_{n}\right)$ is bad \& monotone.
Claim: $\left(y_{n}\right)$ is bod above by 2 .
Pf of claim: Use M.I. Note $y_{1}:=1<2$
Suppox $y_{k}<2$. Then. $y_{k+1}=\frac{1}{4}\left(2 y_{k}+3\right)<\frac{7}{4}<2$.

$$
y_{1}=1
$$

$y_{2}=\frac{1}{4}(2+3)=\frac{5}{4}$
$y_{3}=\frac{1}{4}\left(2 \cdot \frac{5}{4}+3\right)=\frac{11}{8}$

Claim: $\left(y_{n}\right)$ is increasing, ie. $y_{n} \leq y_{n+1} \quad \forall n \in \mathbb{N}$.
Pf of claim: Use M.I. Note $y_{1}:=1<\frac{5}{4}=y_{2}$.
Assume $y_{k} \leq y_{k+1}$. Then

$$
y_{k+1}=\frac{1}{4}\left(2 y_{k}+3\right) \leqslant \frac{1}{4}\left(2 y_{k+1}+3\right)=y_{k+2} .
$$

So $\left(y_{n}\right)$ is bad \& monotone. by $M C T$. $\lim \left(y_{n}\right)=y$ exists.
Since $\left(y_{n}\right)$ is convergent, we have $\lim \left(y_{n+1}\right)=\lim \left(y_{n}\right)=y$
Take $n \rightarrow \infty$ on both sides of (*):

$$
\begin{aligned}
\lim \left(y_{n+1}\right) & =\lim \frac{1}{4}\left(2 y_{n}+3\right)=\frac{1}{4}\left(2 \lim \left(y_{n}\right)+3\right) \\
\Rightarrow \quad y & =\frac{1}{4}(2 y+3)
\end{aligned}
$$

Solving for y, get $y=\frac{3}{2}$.
Example 3: Fix $a>0$. Define inductively

$$
S_{1}:=1 ; \quad S_{n+1}:=\frac{1}{2}\left(S_{n}+\frac{a}{S_{n}}\right)^{\quad(* *)} \quad \forall n \in \mathbb{N}
$$

Show that $\lim \left(f_{n}\right)=\sqrt{a}>0$.
Proof: Clain 1: $\left(S_{n}\right)$ is bod below by \sqrt{a} (for $n \geqslant 2$)
Pf of Claim: Note $S_{n}>0 \quad \forall n \in \mathbb{N}$. Reworte ($* *$) as

$$
S_{n}^{2}-2 S_{n+1} S_{n}+a=0
$$

So. $x^{2}-2 S_{n+1} x+a=0$ has at least a real root S_{n}

$$
\Rightarrow \quad 4 S_{n+1}^{2}-4 a \geqslant 0 \quad \Rightarrow \quad S_{n+1} \geqslant \sqrt{a} \quad \forall n \in \mathbb{N}
$$

Claim 2: $\left(S_{n}\right)$ is decreasing "eventually", ie $S_{n} \geqslant S_{n+1} \forall n \geqslant 2$.
Pf of chain: $\forall n \geq 2$.

$$
S_{n}-S_{n+1}=S_{n}-\frac{1}{2}\left(S_{n}+\frac{a}{S_{n}}\right)=\frac{1}{2}\left(\frac{S_{n}^{2}-a}{S_{n}}\right) \geqslant 0
$$

By MCT, $\lim \left(S_{n}\right)=: S$ exists.
Take $n \rightarrow \infty$ on both sides of $(* *)$, then we obtain

$$
S=\frac{1}{2}\left(S+\frac{a}{s}\right) \quad\left(\begin{array}{cc}
\text { Note: } & S_{n} \geqslant \sqrt{a} \quad \forall n \geqslant 2 \\
\Rightarrow & S \geqslant \sqrt{a}>0 .
\end{array}\right)
$$

Solve for s

$$
\Rightarrow \quad S=\sqrt{a}>0 .
$$

Def n: Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a seq. of real numbers.
Suppose $n_{1}<n_{2}<n_{3}<\cdots$ be a strictly increasing seq. of natural no. THEN.

$$
\left(x_{n_{k}}\right)_{k \in \mathbb{N}}:=\left(x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots, x_{n_{k}} \ldots\right)
$$

is called a subsequence of $\left(x_{n}\right)_{n \in N}$.

Intuitively:

$$
\begin{array}{rl}
\left(x_{n}\right)= & \left(x_{1}, x_{2}, x_{31}, x_{4}, x_{5,}, x_{6} \ldots\right. \\
\left(x_{n_{k}}\right) & =\left(x_{1}, x_{2}, x_{4}, x_{6}, \ldots \ldots\right) \\
k=1 & k=2 \quad k=3 \quad k=4 \\
n_{1}=1 & n_{2}=2 \quad n_{3}=4 \quad n_{4}=6
\end{array}
$$

E.g.) (Tail of aseq, For each fixed $\& \in(N$, then
the $l-\operatorname{tait}\left(x_{k+l}\right)_{k \in N N}$ is a subsequence of $\left(x_{n}\right)_{n \in \operatorname{N}}$
(Here. $n_{k}=k+l$)
Eeg.) $\left(x_{n}\right)=\left((-1)^{n}\right)$
Then $(1,1,1, \ldots, 1, \ldots)$ is a subseq.

